EconPapers    
Economics at your fingertips  
 

Probabilistic sensitivity analysis of complex models: a Bayesian approach

Jeremy E. Oakley and Anthony O'Hagan

Journal of the Royal Statistical Society Series B, 2004, vol. 66, issue 3, 751-769

Abstract: Summary. In many areas of science and technology, mathematical models are built to simulate complex real world phenomena. Such models are typically implemented in large computer programs and are also very complex, such that the way that the model responds to changes in its inputs is not transparent. Sensitivity analysis is concerned with understanding how changes in the model inputs influence the outputs. This may be motivated simply by a wish to understand the implications of a complex model but often arises because there is uncertainty about the true values of the inputs that should be used for a particular application. A broad range of measures have been advocated in the literature to quantify and describe the sensitivity of a model's output to variation in its inputs. In practice the most commonly used measures are those that are based on formulating uncertainty in the model inputs by a joint probability distribution and then analysing the induced uncertainty in outputs, an approach which is known as probabilistic sensitivity analysis. We present a Bayesian framework which unifies the various tools of prob‐ abilistic sensitivity analysis. The Bayesian approach is computationally highly efficient. It allows effective sensitivity analysis to be achieved by using far smaller numbers of model runs than standard Monte Carlo methods. Furthermore, all measures of interest may be computed from a single set of runs.

Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (130)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2004.05304.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:66:y:2004:i:3:p:751-769

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:66:y:2004:i:3:p:751-769