Exact filtering for partially observed continuous time models
Paul Fearnhead and
Loukia Meligkotsidou
Journal of the Royal Statistical Society Series B, 2004, vol. 66, issue 3, 771-789
Abstract:
Summary. The forward–backward algorithm is an exact filtering algorithm which can efficiently calculate likelihoods, and which can be used to simulate from posterior distributions. Using a simple result which relates gamma random variables with different rates, we show how the forward–backward algorithm can be used to calculate the distribution of a sum of gamma random variables, and to simulate from their joint distribution given their sum. One application is to calculating the density of the time of a specific event in a Markov process, as this time is the sum of exponentially distributed interevent times. This enables us to apply the forward–backward algorithm to a range of new problems. We demonstrate our method on three problems: calculating likelihoods and simulating allele frequencies under a non‐neutral population genetic model, analysing a stochastic epidemic model and simulating speciation times in phylogenetics.
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2004.05561.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:66:y:2004:i:3:p:771-789
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().