An invitation to quantum tomography
L. M. Artiles,
R. D. Gill and
M. I. Gut¸ă
Journal of the Royal Statistical Society Series B, 2005, vol. 67, issue 1, 109-134
Abstract:
Summary. We describe quantum tomography as an inverse statistical problem in which the quantum state of a light beam is the unknown parameter and the data are given by results of measurements performed on identical quantum systems. The state can be represented as an infinite dimensional density matrix or equivalently as a density on the plane called the Wigner function. We present consistency results for pattern function projection estimators and for sieve maximum likelihood estimators for both the density matrix of the quantum state and its Wigner function. We illustrate the performance of the estimators on simulated data. An EM algorithm is proposed for practical implementation. There remain many open problems, e.g. rates of convergence, adaptation and studying other estimators; a main purpose of the paper is to bring these to the attention of the statistical community.
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2005.00491.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:67:y:2005:i:1:p:109-134
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().