Analysis of longitudinal data unbalanced over time
Wenzheng Huang and
Garrett M. Fitzmaurice
Journal of the Royal Statistical Society Series B, 2005, vol. 67, issue 1, 135-155
Abstract:
Summary. The paper considers modelling, estimating and diagnostically verifying the response process generating longitudinal data, with emphasis on association between repeated meas‐ures from unbalanced longitudinal designs. Our model is based on separate specifications of the moments for the mean, standard deviation and correlation, with different components possibly sharing common parameters. We propose a general class of correlation structures that comprise random effects, measurement errors and a serially correlated process. These three elements are combined via flexible time‐varying weights, whereas the serial correlation can depend flexibly on the mean time and lag. When the measurement schedule is independent of the response process, our estimation procedure yields consistent and asymptotically normal estimates for the mean parameters even when the standard deviation and correlation are misspecified, and for the standard deviation parameters even when the correlation is misspecified. A generic diagnostic method is developed for verifying the models for the mean, standard deviation and, in particular, the correlation, which is applicable even when the data are severely unbalanced. The methodology is illustrated by an analysis of data from a longitudinal study that was designed to characterize pulmonary growth in girls.
Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2005.00492.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:67:y:2005:i:1:p:135-155
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().