EconPapers    
Economics at your fingertips  
 

Model determination for categorical data with factor level merging

Petros Dellaportas and Claudia Tarantola

Journal of the Royal Statistical Society Series B, 2005, vol. 67, issue 2, 269-283

Abstract: Summary. We deal with contingency table data that are used to examine the relationships between a set of categorical variables or factors. We assume that such relationships can be adequately described by the cond`itional independence structure that is imposed by an undirected graphical model. If the contingency table is large, a desirable simplified interpretation can be achieved by combining some categories, or levels, of the factors. We introduce conditions under which such an operation does not alter the Markov properties of the graph. Implementation of these conditions leads to Bayesian model uncertainty procedures based on reversible jump Markov chain Monte Carlo methods. The methodology is illustrated on a 2×3×4 and up to a 4×5×5×2×2 contingency table.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2005.00501.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:67:y:2005:i:2:p:269-283

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:67:y:2005:i:2:p:269-283