EconPapers    
Economics at your fingertips  
 

Bayesian likelihood methods for estimating the end point of a distribution

Peter Hall and Julian Z. Wang

Journal of the Royal Statistical Society Series B, 2005, vol. 67, issue 5, 717-729

Abstract: Summary. We consider maximum likelihood methods for estimating the end point of a distribution. The likelihood function is modified by a prior distribution that is imposed on the location parameter. The prior is explicit and meaningful, and has a general form that adapts itself to different settings. Results on convergence rates and limiting distributions are given. In particular, it is shown that the limiting distribution is non‐normal in non‐regular cases. Parametric bootstrap techniques are suggested for quantifying the accuracy of the estimator. We illustrate performance by applying the method to multiparameter Weibull and gamma distributions.

Date: 2005
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2005.00523.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:67:y:2005:i:5:p:717-729

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:67:y:2005:i:5:p:717-729