Multiscale Poisson data smoothing
Maarten Jansen
Journal of the Royal Statistical Society Series B, 2006, vol. 68, issue 1, 27-48
Abstract:
Summary. The paper introduces a framework for non‐linear multiscale decompositions of Poisson data that have piecewise smooth intensity curves. The key concept is conditioning on the sum of the observations that are involved in the computation of a given multiscale coefficient. Within this framework, most classical wavelet thresholding schemes for data with additive homoscedastic noise can be used. Any family of wavelet transforms (orthogonal, biorthogonal or second generation) can be incorporated in this framework. Our second contribution is to propose a Bayesian shrinkage approach with an original prior for coefficients of this decomposition. As such, the method combines the advantages of the Haar–Fisz transform with wavelet smoothing and (Bayesian) multiscale likelihood models, with additional benefits, such as extendability towards arbitrary wavelet families. Simulations show an important reduction in average squared error of the output, compared with the present techniques of Anscombe or Fisz variance stabilization or multiscale likelihood modelling.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2005.00531.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:68:y:2006:i:1:p:27-48
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().