EconPapers    
Economics at your fingertips  
 

Improved likelihood inference for discrete data

A. C. Davison, D. A. S. Fraser and N. Reid

Journal of the Royal Statistical Society Series B, 2006, vol. 68, issue 3, 495-508

Abstract: Summary. Discrete data, particularly count and contingency table data, are typically analysed by using methods that are accurate to first order, such as normal approximations for maximum likelihood estimators. By contrast continuous data can quite generally be analysed by using third‐order procedures, with major improvements in accuracy and with intrinsic separation of information concerning parameter components. The paper extends these higher order results to discrete data, yielding a methodology that is widely applicable and accurate to second order. The extension can be described in terms of an approximating exponential model that is expressed in terms of a score variable. The development is outlined and the flexibility of the approach is illustrated by examples.

Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2006.00548.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:68:y:2006:i:3:p:495-508

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:68:y:2006:i:3:p:495-508