A functional wavelet–kernel approach for time series prediction
Anestis Antoniadis,
Efstathios Paparoditis and
Theofanis Sapatinas
Journal of the Royal Statistical Society Series B, 2006, vol. 68, issue 5, 837-857
Abstract:
Summary. We consider the prediction problem of a time series on a whole time interval in terms of its past. The approach that we adopt is based on functional kernel nonparametric regression estimation techniques where observations are discrete recordings of segments of an underlying stochastic process considered as curves. These curves are assumed to lie within the space of continuous functions, and the discretized time series data set consists of a relatively small, compared with the number of segments, number of measurements made at regular times. We estimate conditional expectations by using appropriate wavelet decompositions of the segmented sample paths. A notion of similarity, based on wavelet decompositions, is used to calibrate the prediction. Asymptotic properties when the number of segments grows to ∞ are investigated under mild conditions, and a nonparametric resampling procedure is used to generate, in a flexible way, valid asymptotic pointwise prediction intervals for the trajectories predicted. We illustrate the usefulness of the proposed functional wavelet–kernel methodology in finite sample situations by means of a simulated example and two real life data sets, and we compare the resulting predictions with those obtained by three other methods in the literature, in particular with a smoothing spline method, with an exponential smoothing procedure and with a seasonal autoregressive integrated moving average model.
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2006.00569.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:68:y:2006:i:5:p:837-857
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().