Nested generalized linear mixed models: an orthodox best linear unbiased predictor approach
Renjun Ma and
Bent Jørgensen
Journal of the Royal Statistical Society Series B, 2007, vol. 69, issue 4, 625-641
Abstract:
Summary. We introduce a new class of generalized linear mixed models based on the Tweedie exponential dispersion model distributions, accommodating a wide range of discrete, continuous and mixed data. Using the best linear unbiased predictor of random effects, we obtain an optimal estimating function for the regression parameters in the sense of Godambe, allowing an efficient common fitting algorithm for the whole class. Although allowing full parametric inference, our main results depend only on the first‐ and second‐moment assumptions of unobserved random effects. In addition, we obtain consistent estimators for both regression and dispersion parameters. We illustrate the method by analysing the epilepsy data and cake baking data. Along with simulations and asymptotic justifications, this shows the usefulness of the method for analysis of clustered non‐normal data.
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2007.00603.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:69:y:2007:i:4:p:625-641
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().