Marginal likelihood estimation via power posteriors
N. Friel and
A. N. Pettitt
Journal of the Royal Statistical Society Series B, 2008, vol. 70, issue 3, 589-607
Abstract:
Summary. Model choice plays an increasingly important role in statistics. From a Bayesian perspective a crucial goal is to compute the marginal likelihood of the data for a given model. However, this is typically a difficult task since it amounts to integrating over all model parameters. The aim of the paper is to illustrate how this may be achieved by using ideas from thermodynamic integration or path sampling. We show how the marginal likelihood can be computed via Markov chain Monte Carlo methods on modified posterior distributions for each model. This then allows Bayes factors or posterior model probabilities to be calculated. We show that this approach requires very little tuning and is straightforward to implement. The new method is illustrated in a variety of challenging statistical settings.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (44)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2007.00650.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:70:y:2008:i:3:p:589-607
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().