Semiparametric inference in generalized mixed effects models
María José Lombardía and
Stefan Sperlich ()
Journal of the Royal Statistical Society Series B, 2008, vol. 70, issue 5, 913-930
Abstract:
Summary. The paper presents a study of the generalized partially linear model including random effects in its linear part. We propose an estimator that combines likelihood approaches for mixed effects models, with kernel methods. Following the methodology of Härdle and co‐workers, we introduce a test for the hypothesis of a parametric mixed effects model against the alternative of a semiparametric mixed effects model. The critical values are estimated by using a bootstrap procedure. The asymptotic theory for the methods is provided, as are the results of a simulation study. These verify the feasibility and the excellent behaviour of the methods for samples of even moderate size. The usefulness of the methodology is illustrated with an application in which the objective is to estimate forest coverage in Galicia, Spain.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2008.00655.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:70:y:2008:i:5:p:913-930
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().