Separation measures and the geometry of Bayes factor selection for classification
Jim Q. Smith,
Paul E. Anderson and
Silvia Liverani
Journal of the Royal Statistical Society Series B, 2008, vol. 70, issue 5, 957-980
Abstract:
Summary. Conjugacy assumptions are often used in Bayesian selection over a partition because they allow the otherwise unfeasibly large model space to be searched very quickly. The implications of such models can be analysed algebraically. We use the explicit forms of the associated Bayes factors to demonstrate that such methods can be unstable under common settings of the associated hyperparameters. We then prove that the regions of instability can be removed by setting the hyperparameters in an unconventional way. Under this family of assignments we prove that model selection is determined by an implicit separation measure: a function of the hyperparameters and the sufficient statistics of clusters in a given partition. We show that this family of separation measures has plausible properties. The methodology proposed is illustrated through the selection of clusters of longitudinal gene expression profiles.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2008.00664.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:70:y:2008:i:5:p:957-980
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().