Bayesian model selection using test statistics
Jianhua Hu and
Valen E. Johnson
Journal of the Royal Statistical Society Series B, 2009, vol. 71, issue 1, 143-158
Abstract:
Summary. Existing Bayesian model selection procedures require the specification of prior distributions on the parameters appearing in every model in the selection set. In practice, this requirement limits the application of Bayesian model selection methodology. To overcome this limitation, we propose a new approach towards Bayesian model selection that uses classical test statistics to compute Bayes factors between possible models. In several test cases, our approach produces results that are similar to previously proposed Bayesian model selection and model averaging techniques in which prior distributions were carefully chosen. In addition to eliminating the requirement to specify complicated prior distributions, this method offers important computational and algorithmic advantages over existing simulation‐based methods. Because it is easy to evaluate the operating characteristics of this procedure for a given sample size and specified number of covariates, our method facilitates the selection of hyperparameter values through prior‐predictive simulation.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2008.00678.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:71:y:2009:i:1:p:143-158
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().