Parameter estimation for partially observed hypoelliptic diffusions
Yvo Pokern,
Andrew M. Stuart and
Petter Wiberg
Journal of the Royal Statistical Society Series B, 2009, vol. 71, issue 1, 49-73
Abstract:
Summary. Hypoelliptic diffusion processes can be used to model a variety of phenomena in applications ranging from molecular dynamics to audio signal analysis. We study parameter estimation for such processes in situations where we observe some components of the solution at discrete times. Since exact likelihoods for the transition densities are typically not known, approximations are used that are expected to work well in the limit of small intersample times Δt and large total observation times N Δt. Hypoellipticity together with partial observation leads to ill conditioning requiring a judicious combination of approximate likelihoods for the various parameters to be estimated. We combine these in a deterministic scan Gibbs sampler alternating between missing data in the unobserved solution components, and parameters. Numerical experiments illustrate asymptotic consistency of the method when applied to simulated data. The paper concludes with an application of the Gibbs sampler to molecular dynamics data.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2008.00689.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:71:y:2009:i:1:p:49-73
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().