Multiscale methods for data on graphs and irregular multidimensional situations
Maarten Jansen,
Guy P. Nason and
B. W. Silverman
Journal of the Royal Statistical Society Series B, 2009, vol. 71, issue 1, 97-125
Abstract:
Summary. For regularly spaced one‐dimensional data, wavelet shrinkage has proven to be a compelling method for non‐parametric function estimation. We create three new multiscale methods that provide wavelet‐like transforms both for data arising on graphs and for irregularly spaced spatial data in more than one dimension. The concept of scale still exists within these transforms, but as a continuous quantity rather than dyadic levels. Further, we adapt recent empirical Bayesian shrinkage techniques to enable us to perform multiscale shrinkage for function estimation both on graphs and for irregular spatial data. We demonstrate that our methods perform very well when compared with several other methods for spatial regression for both real and simulated data. Although we concentrate on multiscale shrinkage (regression) we present our new ‘wavelet transforms’ as generic tools intended to be the basis of methods that might benefit from a multiscale representation of data either on graphs or for irregular spatial data.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2008.00672.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:71:y:2009:i:1:p:97-125
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().