Hybrid Dirichlet mixture models for functional data
Sonia Petrone,
Michele Guindani and
Alan E. Gelfand
Journal of the Royal Statistical Society Series B, 2009, vol. 71, issue 4, 755-782
Abstract:
Summary. In functional data analysis, curves or surfaces are observed, up to measurement error, at a finite set of locations, for, say, a sample of n individuals. Often, the curves are homogeneous, except perhaps for individual‐specific regions that provide heterogeneous behaviour (e.g. ‘damaged’ areas of irregular shape on an otherwise smooth surface). Motivated by applications with functional data of this nature, we propose a Bayesian mixture model, with the aim of dimension reduction, by representing the sample of n curves through a smaller set of canonical curves. We propose a novel prior on the space of probability measures for a random curve which extends the popular Dirichlet priors by allowing local clustering: non‐homogeneous portions of a curve can be allocated to different clusters and the n individual curves can be represented as recombinations (hybrids) of a few canonical curves. More precisely, the prior proposed envisions a conceptual hidden factor with k‐levels that acts locally on each curve. We discuss several models incorporating this prior and illustrate its performance with simulated and real data sets. We examine theoretical properties of the proposed finite hybrid Dirichlet mixtures, specifically, their behaviour as the number of the mixture components goes to ∞ and their connection with Dirichlet process mixtures.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2009.00708.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:71:y:2009:i:4:p:755-782
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().