A Bayesian discovery procedure
Michele Guindani,
Peter Müller and
Song Zhang
Journal of the Royal Statistical Society Series B, 2009, vol. 71, issue 5, 905-925
Abstract:
Summary. We discuss a Bayesian discovery procedure for multiple‐comparison problems. We show that, under a coherent decision theoretic framework, a loss function combining true positive and false positive counts leads to a decision rule that is based on a threshold of the posterior probability of the alternative. Under a semiparametric model for the data, we show that the Bayes rule can be approximated by the optimal discovery procedure, which was recently introduced by Storey. Improving the approximation leads us to a Bayesian discovery procedure, which exploits the multiple shrinkage in clusters that are implied by the assumed non‐parametric model. We compare the Bayesian discovery procedure and the optimal discovery procedure estimates in a simple simulation study and in an assessment of differential gene expression based on microarray data from tumour samples. We extend the setting of the optimal discovery procedure by discussing modifications of the loss function that lead to different single‐thresholding statistics. Finally, we provide an application of the previous arguments to dependent (spatial) data.
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2009.00714.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:71:y:2009:i:5:p:905-925
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().