A multiresolution approach to time warping achieved by a Bayesian prior–posterior transfer fitting strategy
Gerda Claeskens,
Bernard W. Silverman and
Leen Slaets
Journal of the Royal Statistical Society Series B, 2010, vol. 72, issue 5, 673-694
Abstract:
Summary. Warping is an approach to the reduction and analysis of phase variability in functional observations, by applying a smooth bijection to the function argument. We propose a natural representation of warping functions in terms of a new type of elementary functions named ‘warping component functions’, or ‘warplets’, which are combined into the warping function by composition. The inverse warping function is trivial and explicit to obtain. A sequential Bayesian estimation strategy is introduced which fits a series of models and transfers the posterior of the previous fit into the prior of the next fit. Model selection is based on a warping analogue to wavelet thresholding, combined with Bayesian inference.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2010.00752.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:72:y:2010:i:5:p:673-694
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().