EconPapers    
Economics at your fingertips  
 

Outlier robust small area estimation

Ray Chambers, Hukum Chandra, Nicola Salvati and Nikos Tzavidis

Journal of the Royal Statistical Society Series B, 2014, vol. 76, issue 1, 47-69

Abstract: type="main" xml:id="rssb12019-abs-0001">

Recently proposed outlier robust small area estimators can be substantially biased when outliers are drawn from a distribution that has a different mean from that of the rest of the survey data. This naturally leads one to consider an outlier robust bias correction for these estimators. We develop this idea, proposing two different analytical mean-squared error estimators for the ensuing bias-corrected outlier robust estimators. Simulations based on realistic outlier-contaminated data show that the bias correction proposed often leads to more efficient estimators. Furthermore, the mean-squared error estimation methods proposed appear to perform well with a variety of outlier robust small area estimators.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (41)

Downloads: (external link)
http://hdl.handle.net/10.1111/rssb.2013.76.issue-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:76:y:2014:i:1:p:47-69

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:76:y:2014:i:1:p:47-69