Space–time modelling of extreme events
R. Huser and
A. C. Davison
Journal of the Royal Statistical Society Series B, 2014, vol. 76, issue 2, 439-461
Abstract:
type="main" xml:id="rssb12035-abs-0001">
Max-stable processes are the natural analogues of the generalized extreme value distribution when modelling extreme events in space and time. Under suitable conditions, these processes are asymptotically justified models for maxima of independent replications of random fields, and they are also suitable for the modelling of extreme measurements over high thresholds. The paper shows how a pairwise censored likelihood can be used for consistent estimation of the extremes of space–time data under mild mixing conditions and illustrates this by fitting an extension of a model due to Schlather to hourly rainfall data. A block bootstrap procedure is used for uncertainty assessment. Estimator efficiency is considered and the choice of pairs to be included in the pairwise likelihood is discussed. The model proposed fits the data better than some natural competitors.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://hdl.handle.net/10.1111/rssb.2014.76.issue-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:76:y:2014:i:2:p:439-461
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().