Split sample methods for constructing confidence intervals for binomial and Poisson parameters
Geoffrey Decrouez and
Peter Hall
Journal of the Royal Statistical Society Series B, 2014, vol. 76, issue 5, 949-975
Abstract:
type="main" xml:id="rssb12051-abs-0001">
We introduce a new method for improving the coverage accuracy of confidence intervals for means of lattice distributions. The technique can be applied very generally to enhance existing approaches, although we consider it in greatest detail in the context of estimating a binomial proportion or a Poisson mean, where it is particularly effective. The method is motivated by a simple theoretical result, which shows that, by splitting the original sample of size n into two parts, of sizes n 1 and n 2 = n − n 1 , and basing the confidence procedure on the average of the means of these two subsamples, the highly oscillatory behaviour of coverage error, as a function of n, is largely removed. Perhaps surprisingly, this approach does not increase confidence interval width; usually the width is slightly reduced. Contrary to what might be expected, our new method performs well when it is used to modify confidence intervals based on existing techniques that already perform very well—it typically improves significantly their coverage accuracy. Each application of the split sample method to an existing confidence interval procedure results in a new technique.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1111/rssb.2014.76.issue-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:76:y:2014:i:5:p:949-975
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().