EconPapers    
Economics at your fingertips  
 

Quantile regression adjusting for dependent censoring from semicompeting risks

Ruosha Li and Limin Peng

Journal of the Royal Statistical Society Series B, 2015, vol. 77, issue 1, 107-130

Abstract: type="main" xml:id="rssb12063-abs-0001">

We study quantile regression when the response is an event time subject to potentially dependent censoring. We consider the semicompeting risks setting, where the time to censoring remains observable after the occurrence of the event of interest. Although such a scenario frequently arises in biomedical studies, most of current quantile regression methods for censored data are not applicable because they generally require the censoring time and the event time to be independent. By imposing quite mild assumptions on the association structure between the time-to-event response and the censoring time variable, we propose quantile regression procedures, which allow us to garner a comprehensive view of the covariate effects on the event time outcome as well as to examine the informativeness of censoring. An efficient and stable algorithm is provided for implementing the new method. We establish the asymptotic properties of the resulting estimators including uniform consistency and weak convergence. The theoretical development may serve as a useful template for addressing estimating settings that involve stochastic integrals. Extensive simulation studies suggest that the method proposed performs well with moderate sample sizes. We illustrate the practical utility of our proposals through an application to a bone marrow transplant trial.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1111/rssb.2014.77.issue-1 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:77:y:2015:i:1:p:107-130

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:77:y:2015:i:1:p:107-130