Conditional inferential models: combining information for prior-free probabilistic inference
Ryan Martin and
Chuanhai Liu
Journal of the Royal Statistical Society Series B, 2015, vol. 77, issue 1, 195-217
Abstract:
type="main" xml:id="rssb12070-abs-0001">
The inferential model (IM) framework provides valid prior-free probabilistic inference by focusing on predicting unobserved auxiliary variables. But, efficient IM-based inference can be challenging when the auxiliary variable is of higher dimension than the parameter. Here we show that features of the auxiliary variable are often fully observed and, in such cases, a simultaneous dimension reduction and information aggregation can be achieved by conditioning. This proposed conditioning strategy leads to efficient IM inference and casts new light on Fisher's notions of sufficiency, conditioning and also Bayesian inference. A differential-equation-driven selection of a conditional association is developed, and validity of the conditional IM is proved under some conditions. For problems that do not admit a conditional IM of the standard form, we propose a more flexible class of conditional IMs based on localization. Examples of local conditional IMs in a bivariate normal model and a normal variance components model are also given.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1111/rssb.2014.77.issue-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:77:y:2015:i:1:p:195-217
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().