Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs
Alain Hauser and
Peter Bühlmann
Journal of the Royal Statistical Society Series B, 2015, vol. 77, issue 1, 291-318
Abstract:
type="main" xml:id="rssb12071-abs-0001">
In many applications we have both observational and (randomized) interventional data. We propose a Gaussian likelihood framework for joint modelling of such different data types, based on global parameters consisting of a directed acyclic graph and corresponding edge weights and error variances. Thanks to the global nature of the parameters, maximum likelihood estimation is reasonable with only one or few data points per intervention. We prove consistency of the Bayesian information criterion for estimating the interventional Markov equivalence class of directed acyclic graphs which is smaller than the observational analogue owing to increased partial identifiability from interventional data. Such an improvement in identifiability has immediate implications for tighter bounds for inferring causal effects. Besides methodology and theoretical derivations, we present empirical results from real and simulated data.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1111/rssb.2014.77.issue-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:77:y:2015:i:1:p:291-318
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().