Excursion and contour uncertainty regions for latent Gaussian models
David Bolin and
Finn Lindgren
Journal of the Royal Statistical Society Series B, 2015, vol. 77, issue 1, 85-106
Abstract:
type="main" xml:id="rssb12055-abs-0001">
In several areas of application ranging from brain imaging to astrophysics and geostatistics, an important statistical problem is to find regions where the process studied exceeds a certain level. Estimating such regions so that the probability for exceeding the level in the entire set is equal to some predefined value is a difficult problem connected to the problem of multiple significance testing. In this work, a method for solving this problem, as well as the related problem of finding credible regions for contour curves, for latent Gaussian models is proposed. The method is based on using a parametric family for the excursion sets in combination with a sequential importance sampling method for estimating joint probabilities. The accuracy of the method is investigated by using simulated data and an environmental application is presented.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1111/rssb.2014.77.issue-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:77:y:2015:i:1:p:85-106
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().