EconPapers    
Economics at your fingertips  
 

Inference for non-stationary time series regression with or without inequality constraints

Zhou Zhou

Journal of the Royal Statistical Society Series B, 2015, vol. 77, issue 2, 349-371

Abstract: type="main" xml:id="rssb12077-abs-0001">

We consider statistical inference for time series linear regression where the response and predictor processes may experience general forms of abrupt and smooth non-stationary behaviours over time. Meanwhile, the regression parameters may be subject to linear inequality constraints. A simple and unified procedure for structural stability checks and parameter inference is proposed. In the case where the regression parameters are constrained, the methodology proposed is shown to be consistent whether or not the true regression parameters are on the boundary of the restricted parameter space via utilizing an asymptotically invariant geometric property of polyhedral cones.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1111/rssb.2015.77.issue-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:77:y:2015:i:2:p:349-371

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:77:y:2015:i:2:p:349-371