EconPapers    
Economics at your fingertips  
 

Semiparametric transformation models for causal inference in time-to-event studies with all-or-nothing compliance

Wen Yu, Kani Chen, Michael E. Sobel and Zhiliang Ying

Journal of the Royal Statistical Society Series B, 2015, vol. 77, issue 2, 397-415

Abstract: type="main" xml:id="rssb12072-abs-0001">

We consider causal inference in randomized survival studies with right-censored outcomes and all-or-nothing compliance, using semiparametric transformation models to estimate the distribution of survival times in treatment and control groups, conditionally on covariates and latent compliance type. Estimands depending on these distributions, e.g. the complier average causal effect, the complier effect on survival beyond time t and the complier quantile effect, are then considered. Maximum likelihood is used to estimate the parameters of the transformation models, using a specially designed expectation–maximization algorithm to overcome the computational difficulties that are created by the mixture structure of the problem and the infinite dimensional parameter in the transformation models. The estimators are shown to be consistent, asymptotically normal and semiparametrically efficient. Inferential procedures for the causal parameters are developed. A simulation study is conducted to evaluate the finite sample performance of the estimated causal parameters. We also apply our methodology to a randomized study conducted by the Health Insurance Plan of Greater New York to assess the reduction in breast cancer mortality due to screening.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1111/rssb.2015.77.issue-2 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:77:y:2015:i:2:p:397-415

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:77:y:2015:i:2:p:397-415