A convex pseudolikelihood framework for high dimensional partial correlation estimation with convergence guarantees
Kshitij Khare,
Sang-Yun Oh and
Bala Rajaratnam
Journal of the Royal Statistical Society Series B, 2015, vol. 77, issue 4, 803-825
Abstract:
type="main" xml:id="rssb12088-abs-0001">
Sparse high dimensional graphical model selection is a topic of much interest in modern day statistics. A popular approach is to apply l 1 -penalties to either parametric likelihoods, or regularized regression/pseudolikelihoods, with the latter having the distinct advantage that they do not explicitly assume Gaussianity. As none of the popular methods proposed for solving pseudolikelihood-based objective functions have provable convergence guarantees, it is not clear whether corresponding estimators exist or are even computable, or if they actually yield correct partial correlation graphs. We propose a new pseudolikelihood-based graphical model selection method that aims to overcome some of the shortcomings of current methods, but at the same time retain all their respective strengths. In particular, we introduce a novel framework that leads to a convex formulation of the partial covariance regression graph problem, resulting in an objective function comprised of quadratic forms. The objective is then optimized via a co-ordinatewise approach. The specific functional form of the objective function facilitates rigorous convergence analysis leading to convergence guarantees; an important property that cannot be established by using standard results, when the dimension is larger than the sample size, as is often the case in high dimensional applications. These convergence guarantees ensure that estimators are well defined under very general conditions and are always computable. In addition, the approach yields estimators that have good large sample properties and also respect symmetry. Furthermore, application to simulated and real data, timing comparisons and numerical convergence is demonstrated. We also present a novel unifying framework that places all graphical pseudolikelihood methods as special cases of a more general formulation, leading to important insights.
Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://hdl.handle.net/10.1111/rssb.2015.77.issue-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:77:y:2015:i:4:p:803-825
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().