EconPapers    
Economics at your fingertips  
 

Sparsifying the Fisher linear discriminant by rotation

Ning Hao, Bin Dong and Jianqing Fan

Journal of the Royal Statistical Society Series B, 2015, vol. 77, issue 4, 827-851

Abstract: type="main" xml:id="rssb12092-abs-0001">

Many high dimensional classification techniques have been proposed in the literature based on sparse linear discriminant analysis. To use them efficiently, sparsity of linear classifiers is a prerequisite. However, this might not be readily available in many applications, and rotations of data are required to create the sparsity needed. We propose a family of rotations to create the sparsity required. The basic idea is to use the principal components of the sample covariance matrix of the pooled samples and its variants to rotate the data first and then to apply an existing high dimensional classifier. This rotate-and-solve procedure can be combined with any existing classifiers and is robust against the level of sparsity of the true model. We show that these rotations do create the sparsity that is needed for high dimensional classifications and we provide theoretical understanding why such a rotation works empirically. The effectiveness of the method proposed is demonstrated by several simulated and real data examples, and the improvements of our method over some popular high dimensional classification rules are clearly shown.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1111/rssb.2015.77.issue-4 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:77:y:2015:i:4:p:827-851

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-22
Handle: RePEc:bla:jorssb:v:77:y:2015:i:4:p:827-851