EconPapers    
Economics at your fingertips  
 

A new non-parametric stationarity test of time series in the time domain

Lei Jin, Suojin Wang and Haiyan Wang

Journal of the Royal Statistical Society Series B, 2015, vol. 77, issue 5, 893-922

Abstract: type="main" xml:id="rssb12091-abs-0001">

We propose a new double-order selection test for checking second-order stationarity of a time series. To develop the test, a sequence of systematic samples is defined via Walsh functions. Then the deviations of the autocovariances based on these systematic samples from the corresponding autocovariances of the whole time series are calculated and the uniform asymptotic joint normality of these deviations over different systematic samples is obtained. With a double-order selection scheme, our test statistic is constructed by combining the deviations at different lags in the systematic samples. The null asymptotic distribution of the statistic proposed is derived and the consistency of the test is shown under fixed and local alternatives. Simulation studies demonstrate well-behaved finite sample properties of the method proposed. Comparisons with some existing tests in terms of power are given both analytically and empirically. In addition, the method proposed is applied to check the stationarity assumption of a chemical process viscosity readings data set.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1111/rssb.2015.77.issue-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:77:y:2015:i:5:p:893-922

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:77:y:2015:i:5:p:893-922