EconPapers    
Economics at your fingertips  
 

Exact Bayesian inference in spatiotemporal Cox processes driven by multivariate Gaussian processes

Flávio B. Gonçalves and Dani Gamerman

Journal of the Royal Statistical Society Series B, 2018, vol. 80, issue 1, 157-175

Abstract: We present a novel inference methodology to perform Bayesian inference for spatiotemporal Cox processes where the intensity function depends on a multivariate Gaussian process. Dynamic Gaussian processes are introduced to enable evolution of the intensity function over discrete time. The novelty of the method lies on the fact that no discretization error is involved despite the non‐tractability of the likelihood function and infinite dimensionality of the problem. The method is based on a Markov chain Monte Carlo algorithm that samples from the joint posterior distribution of the parameters and latent variables of the model. A particular choice of the dominating measure to obtain the likelihood function is shown to be crucial to devise a valid Markov chain Monte Carlo algorithm. The models are defined in a general and flexible way but they are amenable to direct sampling from the relevant distributions because of careful characterization of its components. The models also enable the inclusion of regression covariates and/or temporal components to explain the variability of the intensity function. These components may be subject to relevant interaction with space and/or time. Real and simulated examples illustrate the methodology, followed by concluding remarks.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/rssb.12237

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:80:y:2018:i:1:p:157-175

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:80:y:2018:i:1:p:157-175