Another look at distance‐weighted discrimination
Boxiang Wang and
Hui Zou
Journal of the Royal Statistical Society Series B, 2018, vol. 80, issue 1, 177-198
Abstract:
Distance‐weighted discrimination (DWD) is a modern margin‐based classifier with an interesting geometric motivation. It was proposed as a competitor to the support vector machine (SVM). Despite many recent references on DWD, DWD is far less popular than the SVM, mainly because of computational and theoretical reasons. We greatly advance the current DWD methodology and its learning theory. We propose a novel thrifty algorithm for solving standard DWD and generalized DWD, and our algorithm can be several hundred times faster than the existing state of the art algorithm based on second‐order cone programming. In addition, we exploit the new algorithm to design an efficient scheme to tune generalized DWD. Furthermore, we formulate a natural kernel DWD approach in a reproducing kernel Hilbert space and then establish the Bayes risk consistency of the kernel DWD by using a universal kernel such as the Gaussian kernel. This result solves an open theoretical problem in the DWD literature. A comparison study on 16 benchmark data sets shows that data‐driven generalized DWD consistently delivers higher classification accuracy with less computation time than the SVM.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/rssb.12244
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:80:y:2018:i:1:p:177-198
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().