A geometric approach to confidence regions and bands for functional parameters
Hyunphil Choi and
Matthew Reimherr
Journal of the Royal Statistical Society Series B, 2018, vol. 80, issue 1, 239-260
Abstract:
Functional data analysis is now a well‐established discipline of statistics, with its core concepts and perspectives in place. Despite this, there are still fundamental statistical questions which have received relatively little attention. One of these is the systematic construction of confidence regions for functional parameters. This work is concerned with developing, understanding and visualizing such regions. We provide a general strategy for constructing confidence regions in a real separable Hilbert space by using hyperellipsoids and hyper‐rectangles. We then propose specific implementations which work especially well in practice. They provide powerful hypothesis tests and useful visualization tools without relying on simulation. We also demonstrate the negative result that nearly all regions, including our own, have zero coverage when working with empirical covariances. To overcome this challenge we propose a new paradigm for evaluating confidence regions by showing that the distance between an estimated region and the desired region (with proper coverage) tends to 0 faster than the regions shrink to a point. We call this phenomena ghosting and refer to the empirical regions as ghost regions. We illustrate the proposed methods in a simulation study and an application to fractional anisotropy tract profile data.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1111/rssb.12239
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:80:y:2018:i:1:p:239-260
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().