EconPapers    
Economics at your fingertips  
 

Semi‐supervised approaches to efficient evaluation of model prediction performance

Jessica L. Gronsbell and Tianxi Cai

Journal of the Royal Statistical Society Series B, 2018, vol. 80, issue 3, 579-594

Abstract: In many modern machine learning applications, the outcome is expensive or time consuming to collect whereas the predictor information is easy to obtain. Semi‐supervised (SS) learning aims at utilizing large amounts of ‘unlabelled’ data along with small amounts of ‘labelled’ data to improve the efficiency of a classical supervised approach. Though numerous SS learning classification and prediction procedures have been proposed in recent years, no methods currently exist to evaluate the prediction performance of a working regression model. In the context of developing phenotyping algorithms derived from electronic medical records, we present an efficient two‐step estimation procedure for evaluating a binary classifier based on various prediction performance measures in the SS setting. In step I, the labelled data are used to obtain a non‐parametrically calibrated estimate of the conditional risk function. In step II, SS estimates of the prediction accuracy parameters are constructed based on the estimated conditional risk function and the unlabelled data. We demonstrate that, under mild regularity conditions, the estimators proposed are consistent and asymptotically normal. Importantly, the asymptotic variance of the SS estimators is always smaller than that of the supervised counterparts under correct model specification. We also correct for potential overfitting bias in the SS estimators in finite samples with cross‐validation and we develop a perturbation resampling procedure to approximate their distributions. Our proposals are evaluated through extensive simulation studies and illustrated with two real electronic medical record studies aiming to develop phenotyping algorithms for rheumatoid arthritis and multiple sclerosis.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/rssb.12264

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:80:y:2018:i:3:p:579-594

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:80:y:2018:i:3:p:579-594