EconPapers    
Economics at your fingertips  
 

Auxiliary gradient‐based sampling algorithms

Michalis K. Titsias and Omiros Papaspiliopoulos

Journal of the Royal Statistical Society Series B, 2018, vol. 80, issue 4, 749-767

Abstract: We introduce a new family of Markov chain Monte Carlo samplers that combine auxiliary variables, Gibbs sampling and Taylor expansions of the target density. Our approach permits the marginalization over the auxiliary variables, yielding marginal samplers, or the augmentation of the auxiliary variables, yielding auxiliary samplers. The well‐known Metropolis‐adjusted Langevin algorithm MALA and preconditioned Crank–Nicolson–Langevin algorithm pCNL are shown to be special cases. We prove that marginal samplers are superior in terms of asymptotic variance and demonstrate cases where they are slower in computing time compared with auxiliary samplers. In the context of latent Gaussian models we propose new auxiliary and marginal samplers whose implementation requires a single tuning parameter, which can be found automatically during the transient phase. Extensive experimentation shows that the increase in efficiency (measured as the effective sample size per unit of computing time) relative to (optimized implementations of) pCNL, elliptical slice sampling and MALA ranges from tenfold in binary classification problems to 25 fold in log‐Gaussian Cox processes to 100 fold in Gaussian process regression, and it is on a par with Riemann manifold Hamiltonian Monte Carlo sampling in an example where that algorithm has the same complexity as the aforementioned algorithms. We explain this remarkable improvement in terms of the way that alternative samplers try to approximate the eigenvalues of the target. We introduce a novel Markov chain Monte Carlo sampling scheme for hyperparameter learning that builds on the auxiliary samplers. The MATLAB code for reproducing the experiments in the paper is publicly available and an on‐line supplement to this paper contains additional experiments and implementation details.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/rssb.12269

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:80:y:2018:i:4:p:749-767

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:80:y:2018:i:4:p:749-767