The correlated pseudomarginal method
George Deligiannidis,
Arnaud Doucet and
Michael K. Pitt
Journal of the Royal Statistical Society Series B, 2018, vol. 80, issue 5, 839-870
Abstract:
The pseudomarginal algorithm is a Metropolis–Hastings‐type scheme which samples asymptotically from a target probability density when we can only estimate unbiasedly an unnormalized version of it. In a Bayesian context, it is a state of the art posterior simulation technique when the likelihood function is intractable but can be estimated unbiasedly by using Monte Carlo samples. However, for the performance of this scheme not to degrade as the number T of data points increases, it is typically necessary for the number N of Monte Carlo samples to be proportional to T to control the relative variance of the likelihood ratio estimator appearing in the acceptance probability of this algorithm. The correlated pseudomarginal method is a modification of the pseudomarginal method using a likelihood ratio estimator computed by using two correlated likelihood estimators. For random‐effects models, we show under regularity conditions that the parameters of this scheme can be selected such that the relative variance of this likelihood ratio estimator is controlled when N increases sublinearly with T and we provide guidelines on how to optimize the algorithm on the basis of a non‐standard weak convergence analysis. The efficiency of computations for Bayesian inference relative to the pseudomarginal method empirically increases with T and exceeds two orders of magnitude in some examples.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
https://doi.org/10.1111/rssb.12280
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:80:y:2018:i:5:p:839-870
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().