Deterministic parallel analysis: an improved method for selecting factors and principal components
Edgar Dobriban and
Art B. Owen
Journal of the Royal Statistical Society Series B, 2019, vol. 81, issue 1, 163-183
Abstract:
Factor analysis and principal component analysis are used in many application areas. The first step, choosing the number of components, remains a serious challenge. Our work proposes improved methods for this important problem. One of the most popular state of the art methods is parallel analysis (PA), which compares the observed factor strengths with simulated strengths under a noise‐only model. The paper proposes improvements to PA. We first derandomize it, proposing deterministic PA, which is faster and more reproducible than PA. Both PA and deterministic PA are prone to a shadowing phenomenon in which a strong factor makes it difficult to detect smaller but more interesting factors. We propose deflation to counter shadowing. We also propose to raise the decision threshold to improve estimation accuracy. We prove several consistency results for our methods, and test them in simulations. We also illustrate our methods on data from the human genome diversity project, where they significantly improve the accuracy.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1111/rssb.12301
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:81:y:2019:i:1:p:163-183
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().