EconPapers    
Economics at your fingertips  
 

Approximate Bayesian computation with the Wasserstein distance

Espen Bernton, Pierre E. Jacob, Mathieu Gerber and Christian P. Robert

Journal of the Royal Statistical Society Series B, 2019, vol. 81, issue 2, 235-269

Abstract: A growing number of generative statistical models do not permit the numerical evaluation of their likelihood functions. Approximate Bayesian computation has become a popular approach to overcome this issue, in which one simulates synthetic data sets given parameters and compares summaries of these data sets with the corresponding observed values. We propose to avoid the use of summaries and the ensuing loss of information by instead using the Wasserstein distance between the empirical distributions of the observed and synthetic data. This generalizes the well‐known approach of using order statistics within approximate Bayesian computation to arbitrary dimensions. We describe how recently developed approximations of the Wasserstein distance allow the method to scale to realistic data sizes, and we propose a new distance based on the Hilbert space filling curve. We provide a theoretical study of the method proposed, describing consistency as the threshold goes to 0 while the observations are kept fixed, and concentration properties as the number of observations grows. Various extensions to time series data are discussed. The approach is illustrated on various examples, including univariate and multivariate g‐and‐k distributions, a toggle switch model from systems biology, a queuing model and a Lévy‐driven stochastic volatility model.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
https://doi.org/10.1111/rssb.12312

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:81:y:2019:i:2:p:235-269

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:81:y:2019:i:2:p:235-269