EconPapers    
Economics at your fingertips  
 

Hypoelliptic diffusions: filtering and inference from complete and partial observations

Susanne Ditlevsen and Adeline Samson

Journal of the Royal Statistical Society Series B, 2019, vol. 81, issue 2, 361-384

Abstract: The statistical problem of parameter estimation in partially observed hypoelliptic diffusion processes is naturally occurring in many applications. However, because of the noise structure, where the noise components of the different co‐ordinates of the multi‐dimensional process operate on different timescales, standard inference tools are ill conditioned. We propose to use a higher order scheme to approximate the likelihood, such that the different timescales are appropriately accounted for. We show consistency and asymptotic normality with non‐typical convergence rates. When only partial observations are available, we embed the approximation in a filtering algorithm for the unobserved co‐ordinates and use this as a building block in a stochastic approximation expectation–maximization algorithm. We illustrate on simulated data from three models: the harmonic oscillator, the FitzHugh–Nagumo model used to model membrane potential evolution in neuroscience and the synaptic inhibition and excitation model used for determination of neuronal synaptic input.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://doi.org/10.1111/rssb.12307

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:81:y:2019:i:2:p:361-384

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:81:y:2019:i:2:p:361-384