Lack‐of‐fit tests for quantile regression models
Chen Dong,
Guodong Li and
Xingdong Feng
Journal of the Royal Statistical Society Series B, 2019, vol. 81, issue 3, 629-648
Abstract:
The paper novelly transforms lack‐of‐fit tests for parametric quantile regression models into checking the equality of two conditional distributions of covariates. Accordingly, by applying some successful two‐sample test statistics in the literature, two tests are constructed to check the lack of fit for low and high dimensional quantile regression models. The low dimensional test works well when the number of covariates is moderate, whereas the high dimensional test can maintain the power when the number of covariates exceeds the sample size. The null distribution of the high dimensional test has an explicit form, and the p‐values or critical values can then be calculated directly. The finite sample performance of the tests proposed is examined by simulation studies, and their usefulness is further illustrated by two real examples.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/rssb.12321
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:81:y:2019:i:3:p:629-648
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().