EconPapers    
Economics at your fingertips  
 

Narrowest‐over‐threshold detection of multiple change points and change‐point‐like features

Rafal Baranowski, Yining Chen and Piotr Fryzlewicz

Journal of the Royal Statistical Society Series B, 2019, vol. 81, issue 3, 649-672

Abstract: We propose a new, generic and flexible methodology for non‐parametric function estimation, in which we first estimate the number and locations of any features that may be present in the function and then estimate the function parametrically between each pair of neighbouring detected features. Examples of features handled by our methodology include change points in the piecewise constant signal model, kinks in the piecewise linear signal model and other similar irregularities, which we also refer to as generalized change points. Our methodology works with only minor modifications across a range of generalized change point scenarios, and we achieve such a high degree of generality by proposing and using a new multiple generalized change point detection device, termed narrowest‐over‐threshold (NOT) detection. The key ingredient of the NOT method is its focus on the smallest local sections of the data on which the existence of a feature is suspected. For selected scenarios, we show the consistency and near optimality of the NOT algorithm in detecting the number and locations of generalized change points. The NOT estimators are easy to implement and rapid to compute. Importantly, the NOT approach is easy to extend by the user to tailor to their own needs. Our methodology is implemented in the R package not.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
https://doi.org/10.1111/rssb.12322

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:81:y:2019:i:3:p:649-672

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:81:y:2019:i:3:p:649-672