EconPapers    
Economics at your fingertips  
 

Sensitivity analysis for inverse probability weighting estimators via the percentile bootstrap

Qingyuan Zhao, Dylan S. Small and Bhaswar B. Bhattacharya

Journal of the Royal Statistical Society Series B, 2019, vol. 81, issue 4, 735-761

Abstract: To identify the estimand in missing data problems and observational studies, it is common to base the statistical estimation on the ‘missingness at random’ and ‘no unmeasured confounder’ assumptions. However, these assumptions are unverifiable by using empirical data and pose serious threats to the validity of the qualitative conclusions of statistical inference. A sensitivity analysis asks how the conclusions may change if the unverifiable assumptions are violated to a certain degree. We consider a marginal sensitivity model which is a natural extension of Rosenbaum's sensitivity model that is widely used for matched observational studies. We aim to construct confidence intervals based on inverse probability weighting estimators, such that asymptotically the intervals have at least nominal coverage of the estimand whenever the data‐generating distribution is in the collection of marginal sensitivity models. We use a percentile bootstrap and a generalized minimax–maximin inequality to transform this intractable problem into a linear fractional programming problem, which can be solved very efficiently. We illustrate our method by using a real data set to estimate the causal effect of fish consumption on blood mercury level.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://doi.org/10.1111/rssb.12327

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:81:y:2019:i:4:p:735-761

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:81:y:2019:i:4:p:735-761