MALMEM: model averaging in linear measurement error models
Xinyu Zhang,
Yanyuan Ma and
Raymond J. Carroll
Journal of the Royal Statistical Society Series B, 2019, vol. 81, issue 4, 763-779
Abstract:
We develop model averaging estimation in the linear regression model where some covariates are subject to measurement error. The absence of the true covariates in this framework makes the calculation of the standard residual‐based loss function impossible. We take advantage of the explicit form of the parameter estimators and construct a weight choice criterion. It is asymptotically equivalent to the unknown model average estimator minimizing the loss function. When the true model is not included in the set of candidate models, the method achieves optimality in terms of minimizing the relative loss, whereas, when the true model is included, the method estimates the model parameter with root n rate. Simulation results in comparison with existing Bayesian information criterion and Akaike information criterion model selection and model averaging methods strongly favour our model averaging method. The method is applied to a study on health.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/rssb.12317
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:81:y:2019:i:4:p:763-779
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().