A Bayesian hierarchical model for related densities by using Pólya trees
Jonathan Christensen and
Li Ma
Journal of the Royal Statistical Society Series B, 2020, vol. 82, issue 1, 127-153
Abstract:
Bayesian hierarchical models are used to share information between related samples and to obtain more accurate estimates of sample level parameters, common structure and variation between samples. When the parameter of interest is the distribution or density of a continuous variable, a hierarchical model for continuous distributions is required. Various such models have been described in the literature using extensions of the Dirichlet process and related processes, typically as a distribution on the parameters of a mixing kernel. We propose a new hierarchical model based on the Pólya tree, which enables direct modelling of densities and enjoys some computational advantages over the Dirichlet process. The Pólya tree also enables more flexible modelling of the variation between samples, providing more informed shrinkage and permitting posterior inference on the dispersion function, which quantifies the variation between sample densities. We also show how the model can be extended to cluster samples in situations where the observed samples are believed to have been drawn from several latent populations.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/rssb.12346
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:82:y:2020:i:1:p:127-153
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().