Right singular vector projection graphs: fast high dimensional covariance matrix estimation under latent confounding
Rajen D. Shah,
Benjamin Frot,
Gian‐Andrea Thanei and
Nicolai Meinshausen
Journal of the Royal Statistical Society Series B, 2020, vol. 82, issue 2, 361-389
Abstract:
We consider the problem of estimating a high dimensional p×p covariance matrix Σ, given n observations of confounded data with covariance Σ+ΓΓT, where Γ is an unknown p×q matrix of latent factor loadings. We propose a simple and scalable estimator based on the projection onto the right singular vectors of the observed data matrix, which we call right singular vector projection (RSVP). Our theoretical analysis of this method reveals that, in contrast with approaches based on the removal of principal components, RSVP can cope well with settings where the smallest eigenvalue of ΓTΓ is relatively close to the largest eigenvalue of Σ, as well as when the eigenvalues of ΓTΓ are diverging fast. RSVP does not require knowledge or estimation of the number of latent factors q, but it recovers Σ only up to an unknown positive scale factor. We argue that this suffices in many applications, e.g. if an estimate of the correlation matrix is desired. We also show that, by using subsampling, we can further improve the performance of the method. We demonstrate the favourable performance of RSVP through simulation experiments and an analysis of gene expression data sets collated by the GTEX consortium.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/rssb.12359
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:82:y:2020:i:2:p:361-389
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().