EconPapers    
Economics at your fingertips  
 

Sumca: simple, unified, Monte‐Carlo‐assisted approach to second‐order unbiased mean‐squared prediction error estimation

Jiming Jiang and Mahmoud Torabi

Journal of the Royal Statistical Society Series B, 2020, vol. 82, issue 2, 467-485

Abstract: We propose a simple, unified, Monte‐Carlo‐assisted approach (called ‘Sumca’) to second‐order unbiased estimation of the mean‐squared prediction error (MSPE) of a small area predictor. The MSPE estimator proposed is easy to derive, has a simple expression and applies to a broad range of predictors that include the traditional empirical best linear unbiased predictor, empirical best predictor and post‐model‐selection empirical best linear unbiased predictor and empirical best predictor as special cases. Furthermore, the leading term of the MSPE estimator proposed is guaranteed positive; the lower order term corresponds to a bias correction, which can be evaluated via a Monte Carlo method. The computational burden for the Monte Carlo evaluation is much less, compared with other Monte‐Carlo‐based methods that have been used for producing second‐order unbiased MSPE estimators, such as the double bootstrap and Monte Carlo jackknife. The Sumca estimator also has a nice stability feature. Theoretical and empirical results demonstrate properties and advantages of the Sumca estimator.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/rssb.12358

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:82:y:2020:i:2:p:467-485

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:82:y:2020:i:2:p:467-485