A flexible framework for hypothesis testing in high dimensions
Adel Javanmard and
Jason D. Lee
Journal of the Royal Statistical Society Series B, 2020, vol. 82, issue 3, 685-718
Abstract:
Hypothesis testing in the linear regression model is a fundamental statistical problem. We consider linear regression in the high dimensional regime where the number of parameters exceeds the number of samples (p>n). To make informative inference, we assume that the model is approximately sparse, i.e. the effect of covariates on the response can be well approximated by conditioning on a relatively small number of covariates whose identities are unknown. We develop a framework for testing very general hypotheses regarding the model parameters. Our framework encompasses testing whether the parameter lies in a convex cone, testing the signal strength, and testing arbitrary functionals of the parameter. We show that the procedure proposed controls the type I error, and we also analyse the power of the procedure. Our numerical experiments confirm our theoretical findings and demonstrate that we control the false positive rate (type I error) near the nominal level and have high power. By duality between hypotheses testing and confidence intervals, the framework proposed can be used to obtain valid confidence intervals for various functionals of the model parameters. For linear functionals, the length of confidence intervals is shown to be minimax rate optimal.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/rssb.12373
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:82:y:2020:i:3:p:685-718
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().