EconPapers    
Economics at your fingertips  
 

Quasi‐Bayes properties of a procedure for sequential learning in mixture models

Sandra Fortini and Sonia Petrone

Journal of the Royal Statistical Society Series B, 2020, vol. 82, issue 4, 1087-1114

Abstract: Bayesian methods are often optimal, yet increasing pressure for fast computations, especially with streaming data, brings renewed interest in faster, possibly suboptimal, solutions. The extent to which these algorithms approximate Bayesian solutions is a question of interest, but often unanswered. We propose a methodology to address this question in predictive settings, when the algorithm can be reinterpreted as a probabilistic predictive rule. We specifically develop the proposed methodology for a recursive procedure for on‐line learning in non‐parametric mixture models, which is often referred to as Newton's algorithm. This algorithm is simple and fast; however, its approximation properties are unclear. By reinterpreting it as a predictive rule, we can show that it underlies a statistical model which is, asymptotically, a Bayesian, exchangeable mixture model. In this sense, the recursive rule provides a quasi‐Bayes solution. Although the algorithm offers only a point estimate, our clean statistical formulation enables us to provide the asymptotic posterior distribution and asymptotic credible intervals for the mixing distribution. Moreover, it gives insights for tuning the parameters, as we illustrate in simulation studies, and paves the way to extensions in various directions. Beyond mixture models, our approach can be applied to other predictive algorithms.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/rssb.12385

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:82:y:2020:i:4:p:1087-1114

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:82:y:2020:i:4:p:1087-1114