Graphical models for extremes
Sebastian Engelke and
Adrien S. Hitz
Journal of the Royal Statistical Society Series B, 2020, vol. 82, issue 4, 871-932
Abstract:
Conditional independence, graphical models and sparsity are key notions for parsimonious statistical models and for understanding the structural relationships in the data. The theory of multivariate and spatial extremes describes the risk of rare events through asymptotically justified limit models such as max‐stable and multivariate Pareto distributions. Statistical modelling in this field has been limited to moderate dimensions so far, partly owing to complicated likelihoods and a lack of understanding of the underlying probabilistic structures. We introduce a general theory of conditional independence for multivariate Pareto distributions that enables the definition of graphical models and sparsity for extremes. A Hammersley–Clifford theorem links this new notion to the factorization of densities of extreme value models on graphs. For the popular class of Hüsler–Reiss distributions we show that, similarly to the Gaussian case, the sparsity pattern of a general extremal graphical model can be read off from suitable inverse covariance matrices. New parametric models can be built in a modular way and statistical inference can be simplified to lower dimensional marginals. We discuss learning of minimum spanning trees and model selection for extremal graph structures, and we illustrate their use with an application to flood risk assessment on the Danube river.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
https://doi.org/10.1111/rssb.12355
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:82:y:2020:i:4:p:871-932
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().